
C++ and Operating Systems Performance:

A Case Study

�

Vincent F. Russo, Peter W. Madany, and Roy H. Campbell

University of Illinois at Urbana-Champaign

Department of Computer Science

1304 W. Spring�eld Avenue, Urbana, IL 61801

Abstract

Object-oriented design and programming has many software engineering advan-

tages. Its application to large systems, however, has previously been constrained by

performance concerns. The Choices operating system, which has over 75,000 lines of

code, is object-oriented and programmed in C++. This paper is a case study of the

performance of Choices.

1 Introduction

Proponents of object-oriented design and programming proclaim advantages including

design and code reuse and rapid prototyping. Others hesitate to adopt the approach

because of the cost of retraining developers, rumors of poor performance, and the lack of

adequate tools for building large, e�cient object-oriented systems. The C++ language[14]

has been widely promoted as an object-oriented language with minimal overhead. In 1987,

members of the Choices [4] research team set out to build an object-oriented multiprocessor

operating system written in C++. This work represents both an attempt to validate claims

made by proponents of object-oriented programming and an attempt to investigate object-

oriented operating systems. The results of this ongoing experiment include the Choices

operating system, which contains about 75,000 lines of C++ code written by a group of

approximately 15 graduate students.

In this paper we will measure and analyze both the C++ source code and the perfor-

mance of Choices . We will then compare both to a UNIX

TM

[2] system which provides

similar features and performs similar tasks on the same hardware. The conclusion will

show how the evidence from this research supports the claim that, despite the lack of tools

for such work, it is possible to build e�cient, high-performance object-oriented software

in C++ and that such software can compete with commercial software.

2 Overview of Choices

Choices is a complete operating system, which runs stand-alone on a particular com-

puter without depending on any proprietary software. Designed with object-oriented

�

This work was supported in part by NSF grant CISE-1-5-30035 and by NASA grants NSG1471 and

NAG 1-163.

1



techniques[3] and built using an object-oriented programming language, Choices provides

a transparent object-oriented application interface to protected system resources. This in-

terface allows dynamic method invocations on the collection of objects which constitutes

the kernel of the system.

Choices has been designed as a framework that supports experimentation with modern

operating system technology. In particular, Choices is multi-threaded for e�cient multi-

processor use[11]. It o�ers low-level support for light-weight context switching from an

application process to another that shares the same address space, to a system process, or

to an interrupt process. The virtual memory system[12] uses machine-independent page

tables, shared paged \segments" that may be simultaneously located in multiple virtual

address spaces, and scatter-gather I/O for page fault handling. Each segment can have its

own backing storage which may reside on various devices including a disk, a disk partition,

a �le, or physical memory. Distributed virtual memory[5] supports coherent sharing of

data between applications over networks like Ethernet. The �le system class hierarchy[7, 8]

includes support for disks, partitions, and �les and directories conforming to the System

V UNIX[15], BSD 4.2 UNIX[9], or MS-DOS

TM

[10] standards. Programs can use read and

write operations to access the �les or �les can be memory-mapped. Currently, Choices has

networking support for Ethernet, UDP/IP, and TCP/IP. For users who want to run many

existing programs, Choices provides a UNIX compatibility library. An X11

TM

windowing

facility is planned.

The Choices design has been inuenced by, but is not a reimplementation of, sys-

tems like UNIX[2] and Mach[1]. Instead, the goal of Choices is to further parallel high-

performance multiprocessor research by exploiting the customizability of object-oriented

systems.

Choices already runs on Encore Multimaxes

TM

and Apple Macintosh

TM

IIx's. Ports

to the Intel Hypercube

TM

, AT&T 6386 Work Group System

TM

, and Hewlett-Packard

Spectrum

TM

are underway.

3 Results

While it is di�cult to evaluate the impact of a programming language or a style of

programming on program performance, overall, it is the ease with which it is possible

to construct an e�cient software system that matters. Knowledge of the code that is

produced by the compiler for particular programming constructs, the ability of the pro-

grammer, and the use of improved algorithms and data structures can mask the advantages

or disadvantages of the language or style. Our evaluation of the source code for Choices

will therefore be presented on its own without attempting to compare it to UNIX. We will

analyze the e�ect of object-oriented design on code structure and reuse, including mea-

surements of the size and depth of the class hierarchy, the lines of code and the number

of methods per class, the number of methods inherited by subclasses, and the number of

classes used across Choices layers and subsystems.

The calibration of our performance measurements is also complicated by the unique-

ness of the design of Choices as an object-oriented system. But, like any operating system,

Choices provides certain basic functions. We have therefore selected to measure the per-

formance of attributes of Choices that have a close resemblance to features in UNIX and

ignored other features. The measurements were made on an Encore Multimax shared

2



Function, Proxy, and System Call Overheads

type overhead in �s

C function call 3

C++ virtual function call 6

Choices proxy object call 79

Choices system call 81

UNIX system call 98

Table 1: Overhead of Function and System Calls

memory multiprocessor using the 10MHZ NS32332

TM

processor and a microsecond timer.

The UNIX system used is Encore's 4.2 BSD UNIX system which includes optimizations for

parallel processing. The reader should be aware that a direct comparison between Choices

and UNIX may not always be meaningful. For example, we use modern algorithms that

could be used to replace the older algorithms in UNIX to improve performance. We also

use operating system implementations and features that may have been inappropriate at

the time UNIX was designed because of the hardware technology then available. However,

comparisons to UNIX can be used to put the Choices performance numbers in perspective.

Although our results do not allow one to infer the likely performance of an application

running under Choices , nor that C++ and object-oriented programming is superior to C

and standard coding practices, they do show that there is no inherent loss in performance.

We believe that this result, when coupled with the other advantages of building object-

oriented systems using object-oriented design, is signi�cant.

The rest of this section includes the measurements of: procedure and method call

overhead, system and proxy object call overhead, time-slicing overhead, various context

switching times, page faulting handling time, memory allocation and deallocation times,

and �le read, write, open, create, close, and copy times. Before each measurement, we in-

dicate why the measurement is important and how it was made. After each measurement,

we discuss how the results should be interpreted.

3.1 Procedure Call Overhead

The �rst measurements we present provide the basis for some later comparisons and

analysis. Table 1 compares the overhead between a C function call and a C++ virtual

function call. The functions called in this table all take no arguments and return only a

single integer. The measured overhead includes both the invocation and return of the call.

The C++ function call is slower because of the extra indirection caused by the method

lookup in the object's virtual function [14] table and the adjustment of the this pointer to

account for multiple inheritance.

Table 1 also compares two di�erent approaches implemented in Choices for transferring

control from user to system protection mode. These mechanism allow user programs to

request system services, much in the same way as the system call operates under UNIX.

The examples shown implement a function that is similar to the \getpid()" system call in

UNIX.

The �rst approach, which uses a proxy object call [13], allows a user program to invoke

an operation on a system object by invoking a similar operation on a proxy object that

3



Time-slice and Time-slicing Overhead

System function overhead in �s

Choices time-slice (system + hardware) 234

Choices minimum time-slice 17

UNIX time-slice (system + hardware) 356

Table 2: Time-slicing Measurements

is in a user read-only region of virtual memory. This is the mechanism by which Choi-

ces applications request system services. The proxy object method causes a trap into

supervisor state and, therefore, Choices kernel code. The kernel code validates the call

and invokes the appropriate method on the intended system object.

The second approach measured emulates a UNIX system call. It is implemented by

trapping into supervisor state and kernel code with a register containing the index of the

service requested. This is the mechanism by which a UNIX compatibility library, which is

designed to support migration to Choices from UNIX, requests Choices system services.

The last entry in Table 1 shows the overhead for the UNIX getpid() system call, placing

the previous two numbers in perspective.

The better performance of the proxy object call is a result of exploiting knowledge of

the C++ virtual function calling convention. The implementation of the proxy object call

avoids saving unnecessary context during the transfer from non-privileged to privileged

execution. Both the two Choices schemes and the UNIX system call require a small

amount of assembly code to be used in their implementation. The UNIX system call

implementation does not contain a signi�cantly di�erent amount of assembly code and

the getpid() service imposes about the same amount of overhead in either UNIX or Choi-

ces .

3.2 Time-slicing Overhead

Both UNIX and Choices are timesharing operating systems. Timesharing is imple-

mented by running each program in the ready queue for a quantum of time called a

time-slice. Programs are selected from the ready queue using a round robin discipline. Ta-

ble 2 shows the overhead for implementing a time-slice. The measurements were acquired

by time-slicing the execution of a single program that executes a loop and increments a

counter 10 million times. For both Choices and UNIX, the timings were made on an oth-

erwise idle system (i.e., the ready-queue was otherwise empty). Decreasing the size of the

time-slice increases the running time of the program because of additional overhead. The

additional overhead is created by the extra time spent trapping into the operating system

when the timer expires, deciding which process to execute next, and �nally rearming the

timer and dispatching the new process. Using an equation relating the elapsed running

time to the number of time-slices[13], and the running time with no time-slicing,

1

the

measurements can be used to solve a set of simultaneous equations yielding the overhead

per time-slice. Under Choices , the smallest time-slice that will allow the timer to be set

and the user code to be resumed is also shown in Table 2.

The di�erence between the measurements can be explained by the implementation of

1

Unlike Choices, time-slicing cannot easily be disabled in Encore UNIX.

4



Process Switching Overheads in �s

Process type Domain System Application FP Application

System same 88 163 176

Application same 163 221 |

FP Application same 176 | 244

System di�erent | 289 315

Application di�erent 289 370 |

FP Application di�erent 315 | 412

Table 3: Process Context Switching Overhead

interrupts in Choices . In Choices , all interrupts are handled by immediately resuming a

system coroutine which decides what to do next[13]. In the case of an empty ready-queue

in Choices , the minimum overhead is the cost of the interrupt because the interrupted

process will be resumed immediately when the system coroutine determines there are

no other processes ready to run. The context switch between application and system

coroutine and back from system coroutine to application requires a minimal amount of

information to be saved and restored. Further, the interrupt handler invoked for the timer

interrupt is used to reset the timer. The small minimum allowable time-slice is possible

because the interrupt handler delays starting the timer until it has performed all its other

book keeping.

To estimate the approximate cost of time-slicing when the ready-queue is not otherwise

empty, the overhead above should be added to the cost of switching between processes

discussed in Section 3.3.

3.3 Context Switching Overhead

Both UNIX and Choices support concurrent processes. Timesharing provides the

abstraction that the concurrent processes execute at the same time. Under both Encore

UNIX and Choices concurrent processes may also execute in parallel on the multiprocessor

hardware. Often a task or user application will consist of several communicating concur-

rent processes. A process may block waiting for synchronization with another process. In

this section we examine the overheads associated with concurrent processes.

Choices supports lightweight processes. An abstract Process class de�nes the notion

of a process and subclasses de�ne the behaviors of various specializations. Blocking and

time-slicing are implemented using context switching primitives. These save and restore

the processor state corresponding to a blocked or suspended process. In Choices , the

context switching primitives used when a process is blocked or suspended depend on the

classes of both that process and of the process that will next be run on the processor.

When a system process is blocked and another system process is run, minimal context

switching occurs. However, when an application using oating point is blocked and a

di�erent application is run, a larger overhead is incurred.

The Choices process di�ers from a UNIX process. Under UNIX, a process executes

in its own virtual memory. Context switches between processes have a signi�cant over-

head and are \heavy-weight". To alleviate this problem, a separate \light-weight" thread

package can be used in some systems. The package is not part of standard UNIX. Other

5



Virtual Memory Overhead

system overhead in seconds

Choices 1024, 4k pages 12.1

UNIX 1024, 4k pages 11.6

Table 4: Allocating and Zero Filling Pages

UNIX derivatives have kernels that include support for \heavy-weight" (normal UNIX)

and \light-weight" processes. In Choices , it is the context switch that is light- or heavy-

weight, not the processes themselves.

Table 3 shows some of the context switching overheads of Choices for di�erent classes

of process. The measurements were made between two processes using a loop in which each

process relinquishes the processor to the other process. Unfortunately, it was impossible

to repeat this experiment under UNIX since it does not provide primitives to relinquish

the processor directly to another process. Also, since the source code of UNIX on the

Encore Multimax was unavailable, we could not instrument UNIX to gather a similar

performance measure.

Each Choices process executes within a virtual memory called a Domain. Several pro-

cesses may share the same domain. The time for a context switch from one system process

to another in the same domain is 88 microseconds. Such a context switch only requires

the saving and storing of CPU registers used by the system code. The time for a context

switch between two application processes that do not use oating point running in the

same domain is 221 microseconds. The full set of registers used by an application is saved.

When oating point is used, the overhead increases to 244 microseconds as a result of sav-

ing and restoring the oating point registers. The context switch between oating point

application processes in di�erent domains is 412 microseconds. The additional overhead

incurred when the domain di�ers corresponds to ushing the MMU cache and reloading

the page tables for the new domain.

3.4 Virtual Memory Overhead

Both Choices and Encore UNIX have a paged virtual memory. In a paged virtual

memory, �xed sized \pages" of addresses in virtual memory are bound to blocks or \page

frames" of physical memory. The contents of virtual memory are stored on a backing store

until they are needed by a program. A page fetch transfers a page of data from backing

storage to physical memory. On our Encore Multimax, both UNIX and Choices have the

same overhead of 25 milliseconds for a page fetch. Details of the Choices implementation

of virtual memory are discussed elsewhere [12]. The overhead is dominated by the access

time of data on the disk used for backing storage.

The disk overhead can be eliminated by considering the allocation and �lling of new

pages in a virtual memory. Here an application references data that is not yet stored

on a backing store. The system creates the data being referenced by allocating physical

memory to the page being addressed and �lling that page with zeros.

In the measurements shown in Table 4, four megabytes of virtual memory are created

and zeroed by accessing the �rst word of each page. In both the Choices and UNIX

implementations, the page size is 4096 bytes, thus both systems create 1024 pages. The

results show that the Choices overhead is nearly the same as UNIX, even though the

6



Memory Allocation times in �s

Operation Choices Encore UNIX

Allocate 34 54

Free 39 16

Total 73 70

Table 5: Memory Allocation Measurements

Choices code has yet to be tuned.

3.5 Memory Management Overhead

While dynamic memory management is important in C[6] programming, it is essential

to object-oriented programming in C++. In C, the usual memory management operations

are malloc and free, whereas in C++, they are new and delete. Using the new and delete

operations, we measured the average overhead for creating and deleting objects of various

sizes ranging from 32 to 4096 bytes. Table 5 contains the results of our measurements.

Both systems use a similar algorithm for memory management, and both systems incur

similar overhead. However, the Choices allocator adds several important features. These

features include alignment, space e�ciency, and support for execution on parallel pro-

cessors. The UNIX allocator aligns every object on an eight-byte boundary; however, it

never aligns objects on page boundaries. The Choices allocator aligns all objects larger

than one page on page boundaries. Such an alignment policy supports more e�cient usage

of virtual memory and direct-memory-access (DMA) devices. The UNIX allocator stores

state information immediately preceding the blocks it allocates. This extra information,

combined with the allocation algorithm, results in twice as much storage being reserved

for objects whose sizes are powers of two, sizes that are common in computer systems.

On average, the UNIX allocator uses 50 percent more space than the Choices allocator.

The UNIX allocator was written to be run within a single process. The Choices allocator

was written to support the requests of multiple processes running on multiple processors;

therefore, it uses spin-locks to prevent corruption of its internal data structures by si-

multaneously executing processes. Almost half of the time the new and delete operations

take in the Choices allocator is spent locking and unlocking these data structures. By

optimizing the other aspects of memory allocation, the Choices allocator achieves similar

performance to the UNIX allocator, even though it supports parallelism.

Since C++ does not support automatic garbage collection of unneeded objects, Choices

uses reference counts. Because the reference and unreference operations are performed

extremely frequently within the Choices , we optimized their performance. Currently it

takes only 25 microseconds to reference and unreference an object. When an object's

reference count reaches zero, the object is automatically deleted.

3.6 File System Performance

Choices provides stream-oriented �le systems that conform to operating system stan-

dards such as 4.3 BSD UNIX, System V UNIX, and MS-DOS. The �le system class hier-

archy also supports the construction of customized and experimental �le systems. Various

instances of �le systems can coexist and interoperate in a running Choices system. Because

7



File open, create and close in �s

Operation Cached Choices Encore UNIX

Open existing �le NO 32173 � 62 28812 � 241

Open existing �le YES 4163 � 86 2722 � 14

Open currently open �le YES 2593 � 75 2067 � 86

Create new �le NO 29854 � 939 25546 � 1991

Close �le NO 72208 � 2257 80303 � 22233

Table 6: File System Operation Measurements

the BSD �le system is the most e�cient of the systems that currently can be built from

our hierarchy, and because it uses the same on-disk data structures as Encore's version of

UNIX, we have chosen to measure its performance.

Within a disk-based computer system, disk latencies dominate �le operation times. To

reduce these delays, �le systems use various caching techniques, such as the bu�er cache

used in UNIX[2] and the memory-mapped �les used in Choices . A bu�er cache allows

the �le system to keep copies of many of the most recently used disk blocks in physical

memory. Since recently accessed blocks are more likely to be reused, the cache can greatly

reduce the cost of reading and writing data blocks. The UNIX bu�er cache is implemented

in software. It uses a least-recently-used bu�er replacement algorithm and hashing to map

disk block numbers to bu�er addresses. In contrast, Choices allows the �le system to reuse

the page replacement algorithms of its virtual memory management system. Instead of

using a software mapping, Choices uses the virtual memory hardware to map requests for

disk blocks to bu�er addresses.

Because caching often speeds up �le operations by a factor of ten, we measured oper-

ations both when the operation generated a cache miss and a cache hit. To make com-

parisons more signi�cant, we used the same amount of physical memory, two megabytes,

for caching disk blocks in both systems, and we tested the operations in the same order

on each system. Also, because disk latencies vary from access to access, we repeated each

test several times and report the mean value of each measurement and the 95% con�dence

interval for the mean.

To use the �le system, an application program must �rst gain access to �les via open

or create operations. Table 6 contains measurements of the time it takes to open existing

�les and create new �les. The open operation uses both the current directory to convert

a �le name to an inumber and an in-core inode to convert the inumber to a reference

to an open �le object. Choices takes slightly longer than UNIX to open �les, regardless

of whether the disk block describing the �le is cached. The reason Choices takes longer

is that is builds a caching object that it uses to map the �le into memory. We expect

that this small amount of extra overhead for �le opens will be amortized over the entire

time the �le is open. The create operation is similar to the open operation; we chose to

only measure an uncached create, since Choices ushes modi�ed directory blocks to the

disk after a �le is created. Again, the creation time of a caching object accounts for the

di�erence between creating �les for Choices and for UNIX. We also measured the close

operation for a �le opened in read-only mode. The times are similar for both systems. The

reason the close operation takes 70 to 80 milliseconds is that the in-core inode structure

must be written back to the disk, even if the �le has not been modi�ed.

8



Read, write, and lseek times in �s

Operation Cached Choices Encore UNIX

Read block direct NO 26803 � 420 33002 � 1275

Read block direct YES 2524 � 106 3784 � 128

Read block indirect NO 58841 � 4876 53457 � 769

Read block indirect YES 2726 � 294 4358 � 219

Write block direct YES 3752 � 207 3884 � 324

Write block indirect YES 3168 � 23 4324 � 306

Lseek | 111 � 5 194 � 6

Table 7: File Operation Measurements

The most important operations on open �les are read and write. Measurements of

these operations are given in Table 7. Before blocks can be read or written, logical block

numbers must be mapped to physical blocks numbers using the data stored in an inode

structure. Inodes organize this block mapping information into a variable level tree.

2

We

measured I/O operations using both direct blocks and for single-indirect blocks.

3

All

the I/O measurements reported in Table 7 are for reads or writes of 8192-byte aligned

blocks. For cached read and write operations, Choices performs better, since it uses

virtual memory hardware to map disk block number to bu�er addresses. For uncached

read and write operations, Choices and UNIX perform similarly, since both systems must

perform disk I/O and update mapping information.

The lseek operation, which repositions the stream �le location pointer, is essential for

randomly accessed �les. Table 7 also reports the overhead of the lseek operation. Choices

performs lseeks faster primarily because it provides a more e�cient system call mechanism

(see section 3.1).

The interactions between various �le system operations can often lead to unanticipated

results. Therefore, we not only measured the times of individual operations, but we also

measured the time of performing a common series of operations: copying an entire �le.

For this test we chose to copy a one megabyte �le; we measured both the time to copy

the data blocks from disk-to-disk and from cache-to-cache. Table 8 shows the results of

these tests. For disk-to-disk copies, Choices performs slightly faster, largely owing to the

e�ciency of the Choices caching mechanism. For cache-to-cache copies, Choices takes

less than half the time, again owing to the e�ciency of the Choices caching mechanism.

Choices also provides a single operation, copy, to copy an entire �le. By avoiding the

overhead of making many (256) system calls, Choices provides a substantially faster �le

copy mechanism.

4 Code Structure and Reuse

Choices is written as an object-oriented system. It has 281 classes of which 190 are

subclassed from class Object and 90 are miscellaneous support classes. Many of the 90

2

In BSD UNIX, this tree can have 0, 1, or 2 levels of indirection. In System V UNIX, this tree can

have up to 3 levels of indirection.

3

Double and triple-indirect blocks are seldom used.

9



Copy one megabyte �les in seconds

Block size Cached Choices Encore UNIX

8192 NO 8.167 � 0.02 8.542 � 0.11

8192 YES .906 � 0.02 2.019 � 0.11

1048576 YES .562 � 0.03 |

Table 8: File Copy Measurements

Classes and Methods in Levels of Choices Hierarchy

Level Classes Public Methods Protected Methods

1 1 14 0

2 37 197 104

3 56 386 71

4 46 304 60

5 31 143 98

6 18 122 63

7 2 8 1

All levels 191 1174 397

Table 9: Class Hierarchy Characteristics of Choices

classes are introduced to hide machine dependent details. Most of the 190 subclasses are

specializations of several abstract classes. Table 9 shows the number of classes that are

subclassed from class Object and the depth that they occur within the Choices hierarchy.

The average depth of a class within the hierarchy is 3.7. Only 10% of the classes have

a depth greater than 5. The results support other evidence that inheritance has been

used within Choices to structure and reuse the code. The performance measurements of

Choices , as shown in the previous section, indicate that any overheads incurred by method

lookup and the object-oriented organization of the system appear to be trivial compared

with the use that was actually made of subclassing in the construction of the system.

Table 10 shows the organization of Choices code into �les of C++ and assembler. Just

over half of the �les used by Choices contain header information. Less than 11% of the

�les contain machine or processor dependent information. Table 11 shows the organization

of Choices in terms of the lines of code written in C++ and assembler. Assembler code

represents 0.7% of the total number of lines of code, and this is isolated to just ten

�les. Header lines of code represent 34% of the total number of lines of code. The large

number of header �les in comparison with the number of lines of code they contain is

Files of C++ and Assembler Code in Choices

Type \.h" �les \.c" �les Total �les

Entire Choices source code 286 232 518

Containing machine dependent code 13 19 32

Containing processor dependent code 10 12 22

Containing assembler code 0 10 10

Table 10: Source File Characteristics of Choices

10



Lines of C++ and Assembler Code in Choices

Type \.h" lines \.c" lines Total lines

Entire Choices source code 27,012 51,768 78,780

Machine dependent code 2,200 5,635 7,835

Processor dependent code 1354 4,434 5,788

Assembler code 0 555 555

Table 11: Code Characteristics of Choices

a consequence of trying to organize Choices for easier maintenance and less compilation

interdependencies.

5 Conclusions

Despite the scarcity of support tools, C++ is a powerful language in which to proto-

type high-performance systems using an object-oriented approach. The characteristics of

object-oriented systems have reduced the e�ort needed to make major changes in the de-

sign and class hierarchies of these prototypes. Classes and inheritance have yielded much

code reuse, both within and between components and subsystems. Several developers

have been able to work together while avoiding some of the usual pitfalls inherent in large

software projects.

Our evidence shows that the bene�ts of using an object-oriented language for coding

system algorithms outweigh the slight overhead of C++ method calls. Many of the Choices

subsystems outperform and none are signi�cantly slower than their UNIX equivalent, even

though the UNIX system used for comparison is optimized for a multiprocessor. Despite

the lack of performance analysis tools and the di�culties of making fair comparisons,

we encourage others to experiment with building high-performance systems using object-

oriented design and programming.

References

[1] Mike Accetta, Robert Baron, WilliamBolosky, David Golub, Richard Rashid, Avadis

Tevanian, and Michael Young. Mach: A New Kernel Foundation for UNIX Develop-

ment. In Proceedings of Summer USENIX, July 1986.

[2] Maurice J. Bach. The Design of the UNIX Operating System. Prentice Hall, 1986.

[3] Roy H. Campbell, Gary M. Johnston, Peter W. Madany, and Vincent F. Russo. Prin-

ciples of Object-Oriented Operating System Design. Technical Report UIUCDCS-R-

89-1510, University of Illinois at Urbana-Champaign, April 1989.

[4] Roy H. Campbell, Vincent Russo, and Gary Johnston. Choices: The Design of a

Multiprocessor Operating System. In Proceedings of the USENIX C++ Workshop,

pages 109{123, Santa Fe, New Mexico, November 1987.

[5] Gary Johnston and Roy H. Campbell. An Object-Oriented Implementation of Dis-

tributed Virtual Memory. In Proceedings of the USENIX Workshop on Distributed

and Multiprocessor Systems, pages 39{58, September 1989.

11



[6] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice

Hall, 1978.

[7] Peter W. Madany, Roy H. Campbell, Vincent F. Russo, and Douglas E. Leyens. A

Class Hierarchy for Building Stream-Oriented File Systems. In Stephen Cook, editor,

Proceedings of the 1989 European Conference on Object-Oriented Programming, pages

311{328, Nottingham, UK, July 1989. Cambridge University Press.

[8] Peter W. Madany, Douglas E. Leyens, Vincent F. Russo, and Roy H. Campbell. A

C++ Class Hierarchy for Building UNIX-Like File Systems. In Proceedings of the

USENIX C++ Conference, Denver, Colorado, October 1988.

[9] M. K. McKusick, W. N. Joy, S. J. Le�er, and R. S. Fabry. A Fast File System for

UNIX. ACM Transactions on Computer Systems, 2(3):181{197, August 1984.

[10] Peter Norton. The Peter Norton Programmer's Guide to the IBM PC. Microsoft

Press, 1985.

[11] Vince Russo, Gary Johnston, and Roy H. Campbell. Process Management in Mul-

tiprocessor Operating Systems using Class Hierarchical Design. In Proceedings of

OOPSLA '88, San Diego, CA, September 1988.

[12] Vincent Russo and Roy H. Campbell. Virtual Memory and Backing Storage Man-

agement in Multiprocessor Operating Systems using Class Hierarchical Design. In

Proceedings of OOPSLA '89, New Orleans, Louisiana, September 1989.

[13] Vincent F. Russo. The Design and Implementation of an Object-Oriented Operating

System. PhD thesis, University of Illinois at Urbana-Champaign, April 1990 (in

preparation).

[14] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing

Company, 1986.

[15] K. Thompson. Unix implementation. Bell System Technical Journal, 57(6):1931{

1946, July 1978.

12


